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ROBUST STABILITY 
OF SYSTEMS WITH 
DELAYED FEEDBACK* 

Erik  L Verriest 1 and  Anato l i  F. Ivanov  2 

Abstract. Some issues in the stability of differential delay systems in the linear and 
the nonlinear case are investigated. In particular, sufficient robustness conditions are 
derived under which a system remains stable, independent of the length of the delay(s). 
Applications in the design of delayed feedback systems are given. Two approaches are 
presented, one based on Lyapunov theory, the other on a transformation to Jordan form. In 
the former, sufficient conditions are obtained in the form of certain Riccati-type equations. 

1. Introduct ion 

In many applications, such as man-machine systems, biomedical systems, pro- 
cess control, remote control and robotics, delays are inherent in the control due 
to transportation lags, and conduction or communication times. Moreover, the 
delay may not be exactly known, or even fixed. The purpose of  this paper is to 
investigate some stabilization issues of  such delay systems, in particular their 
robustness with respect to the delay times. A connection is made to the theory of  
singular systems, which may provide some new insights into the regularization 
of  such systems. 

In order to fix the ideas, we assume that some system needs to be regulated 
about some fixed operating point. Locally, then, the system dynamical equations 
are suitably approximated by a linear system, 

?c(t) = Ax ( t )  + Bu( t )  (1) 

where x(t) in (1) denotes the state excursion, away from the nominal operating 
point, and u(t)  is an admissible control. In order to accommodate for trans- 
portation and/or communication lags, we assume that at time t the admissible 
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controls belong to the space generated by {x(a)  I a < t - r} for some r > 0. 
In particular, the case where u( t )  is some nonlinear function of the state at the 
latest available instant is considered here, as it coincides with the design of a 
state feedback controller in the absence of a delay: 

u(t)  = K [ x ( t  - r)]. (2) 

Such more general nonlinear control functions are for instance desired in the 
case of  bounded admissible inputs, leading to linearly or quadratically saturating 
controls [1]. 

The closed loop system is then given by the delay differential system 

~c(t) = A x ( t )  + F [ z ( t  - r)] (3) 

where F( . )  = B K ( . ) .  It is well known that the system can also be represented 
via t ime scaling by 

e2(t) = A x ( t )  + F [ x ( t  - 1)] (4) 

where e = 1/r .  One of the approaches used is to consider the above equation as 
a singular perturbation of the difference equation with continuous time, 

A x ( t )  = - F [ ( x ( t -  1))], (5) 

and from this the map - A - 1 F :  R ~ --* R n, with its corresponding dynamical 
system [2]. In the scalar case with F ( x )  = bx, the following results are known for 
the differential delay system [3], [4]: If  a < 0, then all roots of  the characteristic 
equation s = a + be - r s  have real part smaller than some number for all r > 0. If  
a > 0, then for every real cr > 0, there exists an r0(r such that the characteristic 
equation has at least one root with real part larger than cr for all r > r0(a). 

This paper is organized as follows: in Section 2, we consider the class of  
linear differential delay systems. Sufficient conditions for robust stability, in 
terms of Riccati-like equations, are established based on the Lyapunov theory. 
In Section 3 a direct approach is used for the nonlinear and linear robust stability 
problem. 

2. Riccati-type equations 

We consider here the equation (3) for the case of  a linear feedback (2), but with 
arbitrary delay. Let  for simplicity the equation be rewritten as 

J:(t) = A x ( t )  + B x ( t  - r). (6) 

The following sufficient condition is readily established. 

Theorem 1. The system (5) is asymptotically stable, i f  there exists a triple o f  
positive definite (symmetric) matrices P ,  Q and R such that 

A~P  + P A  + Q + P B Q - 1 B ' P  + R = O. (7) 
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Proof. Consider the function 

V(x)  = x ' P x  + x'(a)Qx(cr)da. (8) 
J t - - r  

Along trajectories of (6) we have 

~r(t) = -- [x(t -- r f Q  1/2 -- x(t)' P BQ -T/2] [Qr/2x(t - r) - Q-1/2B' Px(t)] 

+ x(t)' [A'P + P A  + Q + PBQ-1B 'P]x ( t )  

<_ - x ( t ) 'Rx ( t )  <_ O. (9) 

By Lyapunov's lemma, global asymptotic stability follows if the conditions of 
the theorem are satisfied. [] 

The left hand side of the equation (7) is similar to the Riccati equation, but 
has a sign change in the quadratic term. Some other sufficient conditions can be 
derived from it. 

Corollary 1.1. The system (6) is asymptotically stable, if there exists a positive 
definite (symmetric) matrix Z and a positive scalar c~ such that 

Z + ~(ZA'  + AZ)  + o~2BZB t < 0. (10) 

Proof. Set P = p Z  -1  and Q = qZ -1 with q~ = c~ in Theorem 1. [] 

It is an easy consequence of (10) that in the special case of B = bI,~ with 
b scalar, the robust stability is guaranteed if Re)ffA) < -Ibl. This occurs in 
the linearized dynamics of a Continuous Stirred Tank Reaction, CSTR [5]. A 
particularly useful sufficient condition is given in the following. 

Corollary 1 .2 . / f  the symmetric part As of A satisfies 

1 
A~ < - ~ ( q I  + BB ' /q )  

for some positive scalar q, then the system (6) is asymptotically stable. 

(11) 

Proof. Set P = I and Q = ql  in Theorem 1. [] 

Note that the choice q = [[BI[ leads to a simple sufficient condition 

1 
A8 < -~(IIBIII+ BB'/IIBII) 

which reduces in the scalar case to the well known criterion a _< -Ilbll. This 

1 ,_< iiBii,r. sufficient condition is further implied by A, < -II BIlL since i-VffffBB 
This Lyapunov method is easily generalizable to systems with multiple delays. 

We state the following result. 
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Theorem 2. The system 

x(t)  = Ax ( t )  + B l x ( t  - T1) + BlX( t  - ~-2) + " "  + B m x ( t  - "c,D. (12) 

is asymptotically stable for  all values o f  the delays 0 < "q < ~-2 < "'" < Tm if  
there exists a (symmetric) positive definite matrix P, and (symmetric) positive 
definite matrices QI >_ Q2 >_ "'" >_ Qm >_ Qm+l = 0 such that 

m 

A~P + P A  + Q1 + E PB(Q~ - Q i + I ) - I B ' P  < 0. (13) 
i=1 

Proof. Consider the function 

V ( x )  = x ' P x  + x ' (~r)Qlx(a)da + f t -~ - i  x ' (o)Q2x(a)dcr 
--7-1 J r - - 7 " 2  

�9 �9 �9 ~ / ~ - - 7 " m - - i  

+ + x'(~r)Qmx(cr)dcr (14) / 
J t - - l -  m 

and use the same trick of "completing the squares" as in the proof of Theorem 
1. [] 

Without any problem, Corollaries 1 and 2 are easily generalized for this case 
as well. 

3. Approach via Jordan form 

Consider a system of linear differential delay equations 

ex(t) = Ax( t )  + B x ( t  - 1) (15) 

where x c R '~, A and B are real n > n matrices, and c is a positive parameter. 
By a similarity, the system (15) is equivalent to one with an A-matrix in Jordan 
canonical form, A = Blockdiag(Ji). 

Theorem 3. I f  all eigenvalues o f  A have negative real parts, and all eigenvalues 
of  A - 1 B  are inside the unit circle, then the null solution o f  the system (15) is 
stable for  all sufficiently small e > O. 

Proof. By setting e = 0 in (15), the limiting difference system - A x ( t )  = B x ( t - 1 )  
is obtained, which is equivalent to (A is nonsingular) 

x(t)  = - A - 1 B x ( t -  1). (16) 

The conditions of the theorem imply that the null solution of (16) is asymptot- 
ically stable�9 We shall show that the solutions of system (16) and system (15) 
are close within finite time intervals for small c > 0. More precisely, let B1 be 
a unit ball in C( [ -1 ,0 ] ,  R), and let x~(t )  denote the solution of (16) through 
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the initial function qo, while x ~ ( t )  is the solution of (15) through r with fixed 
e > 0. Then we shall show that for arbitrary fixed T > 0 and cr > 0 there exists 
a 6 > 0 and an e0 > 0 such that for every ~ , r  E C ( [ - 1 , 0 ] , R )  one has 

sup{Ixv( t  ) - x~(t)l,  t ~ [0 ,T]}  < cr (17) 

for all 0 < e < co, provided s u p { l ~ ( t ) -  r  I, t E [ - 1 , 0 ] }  < 6. From (17) and 
the asymptotic stability of the null solution of (16), the asymptotic stability of  
the null solution of  (15) is straightforward (for 0 < e < e0). So we are left to 
prove the closeness mentioned above�9 

Consider first the case of  a real eigenvalue A1 < 0. Let it correspond to a 
Jordan block J1 of  size ml  of  matrix A. Equivalently, consider the ml  equations 
of  systems (15): 

e21(t) = AlXl(t) + x2(t) + b l l X l ( t  - 1) + - . .  + b l n X n ( t  - 1) 

ex2(t) = )~ lx2 ( t )  + x 3 ( t )  + b 2 1 x l ( t  - 1) + . . .  + b 2 n x n ( t  - 1) 

(18) 
e~m, - l ( t )  = -~lXml- l (0  + X?Tt I ( t )  "~- b m ~ - l X l ( t  -- 1) + ' "  + b m l - l , n X n ( t  - 1) 

egcm~(t) = / ~ l X m ~ ( t )  + b r m , l l X l ( t  - 1) + " "  + b l m X m ( t  -- 1) 

where A1 < 0. 
From the last equation of system (18), closeness between the ml - th  compo- 

nents of  systems (16) and (15) is derived in essentially the same way as it is 
done in [2]�9 Substituting then x m ~ ( O  to the (ml - 1)-st equation of (18), we 
derive in the same way the closeness between the (ml  - 1)-st components of  
systems (16) and (15), and so on up to the first equation of (18). The arguments 
for other blocks Ji ,  for i > 1 associated with real eigenvalues of  the matrix A 
are the same. 

To show the closeness in the case of  complex conjugate eigenvalues of  matrix 
A we consider first the simplest situation of m = 1. Therefore, we may assume 
that (notice the rescaling) 

- 1  kb21 b22] '  (19) 

The limit case c = 0 corresponds to the system (16) with the consistency condi- 
tion 

x(O) = - A - 1 B x ( -  1), (20) 

where x = [Xl, x2Y. We show the closeness componentwise. The first component 
of  (15) is given by 

x ~ ( t )  = e - t / "  x ~  - x~ 
C 

1/o  [ + - e ~--~ bl l  c o s  - -  + b21 s i n  x l ( s  - 1 )ds  
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lffot [ 02(s- t )  02(s- t )]  
+ - e " ~  b12 cos - -  + b22 sin Xz(S - 1)ds, (21) 

and the first componen t  of  (16) is g iven  by 

1 

xl(t) - 1 + 022 [(bll - wb21)xl(t - 1) + (b12 - 02b22)x2(t - 1)], (22) 

where  t c [0, 1] and xl(t - 1), x2(t - 1) are the first and second componen t s  
of  the init ial  funct ion in [ - 1 , 0 ] ,  x ~ = Xl(0), x ~ = x2(0). The first componen t  of  
the cons is tency  condi t ion  (20) takes the form 

Xl(0) = 1 +102----7 [(bn - 02b21)Xl(-1) + (b12 - wb22)x2(-1)] . (23) 

A s s u m i n g  dif ferent iabi l i ty  of  r  s c [ -  1,0],  it is an easy  exerc ise  to find that  

1 f *  s - ,  02(s - t)  
- e --r- cos (9(s)ds 
6 J o  s 

_ 4)(t) ~)(0) e_t/e cos 
1+02 2 1+02 2 e 

lffo'te(-~t)~t)[02(s-t)cos 
1 +022 e 

and l ikewise  

1 f t  s-~ w ( s -  t) 
- e ~ sin r 
e Jo e 

_ coCk(t) + r  e _ t / ~  
1+02-----7 

1 + 0 2 2 J 0  e , s i n - -  

We note next  that  

- -  - co sin ~-~] 

- -  + 02 sin 02(Se- t ) ]  ~'(s)ds, 

(24) 

w cos - -  + sin 
E 

02(s - t)  co(s - t)] 
- co cos r 

C 

(25) 

jfO t s - t  W(8 
e , sin e- t)(b'(s)ds = O(e), 

t , -~ w(8 
e o cos e-  t ) r  = O(e),  (26) 

as e ---+ +0. Therefore:  substi tut ing (25) and (26) into Ix~(t)-  x l ( t ) l  := A( t ) ,  
t E [0, 1], and taking (23) into account,  we obtain A ( t )  = O(e) for t C [0, 1], 
and e << 1. The  same arguments  show the c loseness  for  the respect ive  second 
components .  To show the c loseness  in the case  of  cont inuous initial  funct ions 
x(s), s E [ - 1 , 0 ] ,  the approach of  [2, Chapter  3] may  be used with more  

technical  detai ls  involved.  
The  arguments  for  2m-d imens iona l  A b locks  cor responding  to a Jordan b lock  

of  s ize m for a complex  e igenvalue  (and its conjugate)  is t reated s imi lar ly  but  
wi th  more  technical  computat ions .  [ ]  

A part ia l  converse  is given in the fol lowing.  
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Theorem 4. I f  there exist eigenvalues o f  A with posit ive real part, then the null 

solution is unstable f o r  sufficiently small  e > O. 

Proof.  The proof will be restricted to the case of  one simple positive (real) 
eigenvalue, with all other having negative real parts, and the case of  one simple 
complex conjugate pair with positive real part, and all other eigenvalues having 
a negative real part. The proof in the other cases proceeds with the same ideas, 
but has more complicated details. 

In the Jordan canonical form we may assume thus that A1 = A1 > 0, and 
Re A~ < 0 for i > 1. Next we shall make use of the following known fact. The 
scalar transcendental equation 

es = a + b e x p ( - s )  (27) 

has roots with i) uniformly (with respect to e > 0) bounded from above real 
parts in the case a < 0, and ii) with unbounded from above real parts as e ~ +0 
in the case a > 0 [3]. Also system (15) is equivalent to the system 

2(t) = A z ( t )  + B z ( t  - r) (28) 

with r = ! and (27) is equivalent to 
c ~ 

s = a + b e x p ( - r s ) .  (29) 

Consider now the corresponding characteristic equation 

A(s)  = de t [ s I  - A - B exp ( - s r ) ]  = 0 (30) 

or in expanded form: 

det -bE~e -st  s - A2 - b22e -s t  -1 - b23e -st "" -b2ne-sr 
" ' "  " . . . . . . . .  " ' '  ---- 0 �9 

- b n l e - s r  . . . . . .  - b n , n - l e  - s t  8 - A m  - b n n e  - s t  

Calculating the above determinant by the Laplace expansion using the first 
row, we have 

A ( s )  = (s -- A1 - b l l e - s r ) p ( s )  + Q(s )  = 0 (31) 

where IQ(s)l  ~ o as r --, +oo and Re s > 1, and P(s )  has no zeros and is 
bounded away from zero for Re s > ro > 0 for some r0 since all Ai, i _> 2 have 
negative real parts. So (31) may be rewritten in the form 

A ( s )  = s - /~1  -- bll e - s t  + R ( s )  = O, 

where IR(s)l is sufficiently small as r >> 1 and Re s > 1. 
Finally, Rouch6's Theorem is invoked, guaranteeing the existence of close 

zeros of  analytic functions under small perturbations. Indeed, since A1 > 0, by 
the above equation, A l ( s )  = s - ,~1 - baae - s t  has a zero so with unbounded 
from above real part as r ~ +c~. The perturbation R ( s )  is small in the vicinity 
of  this zero since Re So >> 1 and r >> 1. Therefore, in the neighborhood of  so 
there exists a zero of  A(s). 
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In the case of  a complex conjugate pair with positive real part, we again 
focus attention to the subsystem, with e > 0, 

e ~  [zz(t) j = ~ Lzz(t)] + [b21 b22 [z2(t  1) " 

We claim that the real parts of the zeros of the corresponding characteristic 
equation of  (32) are unbounded from above for e > 0. Indeed, the characteristic 
equation has the form 

d e t [ e s 2 1 - b H e - S  - w  - bl2e - s  ] 
b21e -~ es - 1 - b22e - s  J = 0, (33) 

or  

0 = (ca - 1) 2 + [ - ( e s  - 1)(bll + b22) + w(b21 - hi2)] e - s  

+ (bnb22 - bizb21)e -2s. (34) 

Now we note that _P(s) defined as es+a+be -~ has zeros with real parts uniformly 
bounded from above for e > 0 in the case a > 0 (with the opposite statement in 
the case a < 0). Therefore, the same property is enjoyed by the quasipolynomial 
Q(s) = P2(s) + c, where c is a constant. But Q(s) is the right hand expression 
in (34) for an appropriate c. [] 

Extensions exist to the nonlinear case with A = - I n .  In particular the estab- 
lished results relate to the invariance and the continuity properties: The following 
theorem says that the set C ( [ - 1 , 0 ] ,  D) is invariant under the semiflow defined 
by (4), provided D is convex, closed, and invariant under F .  

Theorem 5. I f  D is a closed convex invariant domain under the map F, then 

for any qa C C ( [ - I ,  0], D) def XD the solution to the singular delay equation 
has the property that x~ E D for all t > 0 and e >_ O. 

Proof.  Let D C X = R '~ be a convex and closed domain which is invariant 
under F .  Take ~b E XD = {0 E X [ r C D, Vt C [ - 1 , 0 ] }  and suppose that 
there exists a time to >_ 0 such that z~(t) c OD (the boundary of  D) and the 
solution z~(t) leaves the domain D for t > to. Then the vector 2~(t0) is directed 
outside the domain D, and so is the vector em~(t0). Since we may assume to 
to be the first point at which z~(t) leaves the domain D, the F[z~o(to - 1)] lies 
inside the domain D. Therefore the vector F[z~(to - 1)] - x~(to) is directed 
inside the domain D. But according to Equation (4) for A = - I :  

~ ( t o )  = F[z ; ( to  - 1)] - ~;(to) : 

a contradiction. This proves the theorem. [] 

Consider the nonlinear equation 

E2(t) = - x ( t )  + F[x(t  - 1)]. (35) 
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Suppose that the multidimensional map F:  R n ~ R '~ has an arbitrary fixed 
point zo such that there exists an open convex neighborhood L/ of  xo where 
Fk(Lt) are convex sets. (Therefore (']k_>o Fk(b/)  = x0, the fixed point is locally 
attracting.) Let Xu = C ( [ - 1 ,  0], L/) be a subset of initial functions and z~ be a 
solution of (35) constructed through r E Xu.  

Theorem 6. For arbitrary positive e one has 

= v r  �9 xu. 

The theorem says that the (locally) attracting fixed point is asymptotically stable. 
To facilitate the proof of  Theorem 6, we first state a technical lemma. 

L e m m a .  Take an arbitrary open convex set lg containing a domain D1 and 
contained in domain D, and arbitrary initial data (9 E XD. If r is in clL/ 
the closure of U, then x~(t) is in the closure ofbl for all t > O. I f  r is not 
in the closure ofbl then there exists a time to = to(C, D) such that x~(to) E Obl 
(the boundary of U) and x~(t) E c lg / fo r  all t > to. 

Proof. Suppose first that r E clg/. Since clb/ is a convex set, b/ C D and 
bt D f(D),  then f(clb/) C cl/g. Therefore, the condition z~(t) E clb/Vt  >_ 0 is 
implied in this case from the invariance property Theorem 5. 

Suppose next that r ~ clb/. Note that x~(t) E D for all t >_ 0 because 
of Theorem 5. So if we have the first time to such that x~(to) E OD, then 
z~(t) E clL/for  all t > to. To show this we just have to repeat the argument of  
the proof  of  Theorem 5. 

Thus suppose that r r clL/ and z~,(t) ~ cl/g for all t > 0. Let V be the 
maximal open convex set conta in ing/ . /and such that V n cl (z~(t) ,  t _> 0} = 0. 
Note that V may coincide with U. Since V is the maximal set in the above 
sense there exists a sequence {tn}, n = 1 , 2 , . . .  such that x~(tn) --* zo, where 

Xo E OV. Consider now the bound vectors ~'~ = !~ [ - x ~ ( t n )  + F[x~(t~ - 1)]]. 
Since V C D, one has that F(V)  C_ D1. Therefore, all g'~ are of  some length 
bounded away from zero and are directed strictly inside the domain V. Since 
the origins of  the bound vectors gn converge to the point zo E OV and g'n is the 
vector tangent to the solution x~(t) at t = tn, and Ignl > 6 for some 6 > 0, there 
exists tN such that z~(t ~) E V for some t ~ > tN. In other words, the solution 
x~(t) should enter the domain V, a contradiction. This completes the proof  of  
the lemma. [] 

Proof of Theorem 6. Since x = x0 is an attracting fixed point of  the map F 
there exists a sequence of nested convex open neighborhoods Ltk C /-4k+1 such 
that F(Hk) D_ Hk+l and Nk>l Hk = :Co (one may choose Hk+l = span{F(Hk), 
k = 1 ,2 , . . . } ) .  By repeated application of the lemma one sees that there exists a 
sequence {tn} --+ cxz such that either x~(tn) E OLtn or x~(tn) E intUn. Because 
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of the invariance property (Theorem 5) one has x~c(t) E cl/./,~ for all t _> t,~. 
Since Nn>_t Ltn = x0, the stability follows. [] 

Further interesting problems remain. For instance, if the matrix A is singular, 
the singular perturbation e = 0 yields a singular nonlinear system, with the 
associated map implicitly defined by 

Axk+l = - -F[xk] .  (36) 

The behavior of  the nonperturbed solution is not yet completely understood in 
this case. We remark however that for the linear case, it follows from Theorem 
3 that the system is unstable for sufficiently small e. This is essentially a non- 
robustness result of  singular systems as "models" for certain differential delay 
systems. 

4. Conclusions 

Regular systems with delayed feedback lead to differential delay models. A 
connection between the differential delay system and a singular system was 
given. Robust (with respect to the delay) stability and instability conditions were 
presented. We have also shown that Riccati-like equations result from the robust 
stability criteria. Obviously, if an open loop system is unstable, then the closed 
loop with delayed feedback will be unstable for sufficiently large delay time. 
Hence robust stabilization of  unstable open loop systems is impossible. This is 
intuitively clear since for r ~ to  the closed loop properties are determined by 
the open loop behavior. 
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